Abstract

ABSTRACTNew designed or retrofitted structures with the use of isolation system may exhibit nonlinear deformations during strong ground motions. Inelastic displacement ratio of base-isolated structures is studied in this paper by employing two degree of freedom model taking into account inelastic behavior of isolators and superstructure. Parametric study is conducted to evaluate influence of isolator and superstructure properties on inelastic displacement ratio according to two sets of near-fault and far-fault ground motions. Accuracy of proposed equations in the literature to evaluate inelastic displacement ratio are studied, as well. Furthermore, cyclic degradation effects are investigated by considering stiffness and strength degradation and pinching in hysteresis model of superstructure. Eventually, inelastic responses of isolated structures with two types of isolators (lead rubber bearing and friction pendulum bearing) are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.