Abstract
Poly-L-lactic acid (PLLA) is an optically active, biocompatible and biodegradable polymer that has been widely investigated as an artificial cell scaffold material. In its most crystalline form, PLLA is highly anisotropic and is one of the most piezoelectric polymers known. Conversely, amorphous PLLA exhibits little, if any, piezoelectric behavior. Compression molded PLLA films can be endowed with varying amounts of crystalline character and piezoelectricity by uniaxially stretching the polymer in a hot air bath. Understanding the precise crystalline architecture of PLLA that results from tensile drawing is important for constructing cell scaffolds that have highly tailored biodegradation and cell guiding properties. In our work here, we investigate the changes in the thermal properties of PLLA at draw ratios between 1.0 and 5.5 using differential scanning calorimetry (DSC). The crystallinity of the compression molded undrawn starting material is characterized using X-ray diffraction. Our DSC results show an increase in percent crystallinity with increasing draw up to a draw ratio of 4.0. At greater draw ratios, there is a decrease in the crystalline character exhibited by PLLA.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.