Abstract

The UV-damaged DNA-binding (UV-DDB) protein is the major factor that binds DNA containing damage caused by UV radiation in mammalian cells. We have investigated the DNA recognition by this protein in vitro, using synthetic oligonucleotide duplexes and the protein purified from a HeLa cell extract. When a 32P-labeled 30-mer duplex containing the (6-4) photoproduct at a single site was used as a probe, only a single complex was detected in an electrophoretic mobility shift assay. It was demonstrated by Western blotting that both of the subunits (p48 and p127) were present in this complex. Electrophoretic mobility shift assays using various duplexes showed that the UV-DDB protein formed a specific, high affinity complex with the duplex containing an abasic site analog, in addition to the (6-4) photoproduct. By circular permutation analyses, these DNA duplexes were found to be bent at angles of 54 degrees and 57 degrees in the complexes with this protein. From the previously reported NMR studies and the fluorescence resonance energy transfer experiments in the present study, it can be concluded that the UV-DDB protein binds DNA that can be bent easily at the above angle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.