Abstract

Deoxyuridine triphosphate nucleotidohydrolase (dUTPase; EC 3.6.1.23) was purified from HeLa cells by immunoaffinity chromatography. Based on SDS-polyacrylamide gel electrophoresis, two distinct forms of dUTPase were evident in the purified preparation. These proteins were further characterized by a combination of NH2-terminal protein sequencing, mass spectrometry, and mass spectrometry-based protein sequencing. These analyses indicate that the two forms of dUTPase are largely identical, differing only in a short region of their amino-terminal sequences. Despite the structural difference, both forms of dUTPase exhibited identical binding characteristics for dUTP. Each form of dUTPase has a distinct cellular localization. Cellular fractionation and isopycnic density centrifugation indicate that the lower molecular weight form of dUTPase (DUT-N) is associated with the nucleus, while the higher molecular weight species (DUT-M) fractionates with the mitochondria. The DUT-N isoform is approximately 30-fold more abundant in HeLa cells than DUT-M as determined by densitometry. The NH2-terminal protein sequence of both DUT-N and DUT-M did not match previous reports of the predicted amino-terminal sequence for human dUTPase (McIntosh, E.M., Ager, D.D., Gadsden, M.H., and Haynes, R.H. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 8020-8024; Strahler, J.R., Zhu X., Hora, N., Wang, Y.K., Andrews, P.C., Roseman, N.A., Neel, J.V., Turka, L., and Hanash, S.M. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 4991-4995). A cDNA corresponding to the DUT-N isoform was isolated utilizing an oligonucleotide probe based on the determined NH2-terminal sequence. The cDNA contains a 164-amino acid open reading frame, encoding a protein of Mr 17,748. The DUT-N cDNA sequence matches the previously cloned cDNAs with the exception of a few discrepancies in the 5' end. Our data indicate a 69-base pair addition to the 5' end of the previously reported open reading frame.

Highlights

  • Each form of Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) has a distinct cellular localization

  • Western blot analysis of total HeLa cell extract demonstrates that both protein forms immunostain with the polyclonal antisera (Fig. 1, lane 2), suggesting that the two proteins share common epitopes and may represent unique isoforms of the dUTPase protein

  • A deduced amino acid sequence encoded in the 5Ј-untranslated region of reported cDNA sequences encoding human dUTPase [1, 2]

Read more

Summary

Introduction

Each form of dUTPase has a distinct cellular localization. Cellular fractionation and isopycnic density centrifugation indicate that the lower molecular weight form of dUTPase (DUT-N) is associated with the nucleus, while the higher molecular weight species (DUT-M) fractionates with the mitochondria. Amino-terminal Protein Sequence of HeLa S3-derived dUTPase—In an effort to clone and characterize the human dUTPase coding region, approximately 10 ␮g of the more abundant, lower mass dUTPase protein (DUT-N) was purified by immunoaffinity chromotagraphy and subjected to NH2-terminal microsequencing. The predicted translational start site indicated by these authors does not correspond to the native NH2-terminal sequence of the major form of dUTPase in HeLa cells, determined in this study.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.