Abstract

A major challenge of membrane ultrafiltration technology for large-scale microalgal harvesting and recycling of used culture media is membrane fouling, and the chemical nature and molecular properties of fouling are not well understood. To determine possible membrane fouling mechanism, a bench-scale hollow fiber polyvinylchloride (PVC) ultrafiltration membrane unit was employed to harvest the unicellular green alga Chlorella zofingiensis grown in a flat plate photobioreactor. It revealed that Chlorella, bacteria, and dissolved organic matter (DOM) each clogged the membrane, and yet the most severe membrane fouling was caused by DOM, which was also found to be most difficult to remove from the membrane by periodical backwashing. DOM was further fractionated by high performance size exclusion chromatography (HPSEC) into three fractions, i.e., hydrophilic acid fraction (HPI-A), hydrophilic non-acid fraction (HPI-NA) and hydrophobic acid fraction (HPO-A), of which HPI-NA, particularly in a molecular weight range of 7–11kDa, was the major foulants. The results also showed that a carbohydrate fraction of DOM caused greater membrane fouling than a protein fraction did.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.