Abstract

This paper describes the general characteristics of disruptions halo currents in the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. The commonly observed types of vertical motion and resulting halo current patterns are described, and it is shown that plasma discharges developing between components can facilitate halo current flow. The halo current fractions and toroidal peaking factors at various locations in the device are presented. The maximum product of these two metrics for localized halo current measurements is always significantly less than the worst-case expectations from conventional aspect ratio tokamaks (which are typically written in terms of the total halo current). The halo current fraction and impulse is often largest in cases with the fastest plasma current quenches and highest quench rates. The effective duration of the halo current pulse is comparable to or shorter than the plasma current quench time. The largest halo currents have tended to occur in lower β and lower elongation plasmas. The sign of the poloidal halo current is reversed when the toroidal field direction is reversed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.