Abstract
Abstract The methods of pigment dispersion analysis have been reviewed in regard to their application to rubber, plastics, and other vehicle systems. The characteristics of dispersions have been divided into three categories: (1) agglomeration (2) microdispersion (networking) and (3) polymer-phase distribution. Stylus roughness measurements on cut surfaces offer the combination of simplicity and speed of operation with high accuracy and precision for measuring pigment agglomeration in elastomer systems of known composition. This method may also be applied to the surface of thin plastic extrudates. However, optical analyses of thin cryosections are preferred for most plastics or unknown rubber compounds containing high loadings of carbon black. X-radiography is generally preferable for the analysis of inorganic agglomeration in most polymeric vehicle systems. The scanning electron microscope is also applicable for this type of analysis and has the added capability of identifying unknown agglomerates by energy dispersive x-ray analysis. Automated image-analysis techniques may also be utilized in conjunction with microscopical methods for quantifying the agglomeration of most types of pigments. For carbon blacks, the most suitable materials for on-line image analyses with transmitted light are plastics, paints, and inks which contain low black loadings. Higher carbon-black loadings in rubber can be analyzed by incident light using metallographic polishing of sulfur-hardened specimens. The microdispersion of carbon blacks at the primary aggregate level can be measured by means of electrical conductivity. This method is not applicable to inorganic pigments, large-particle-size carbon blacks, or blacks at very high or low loadings. Pigment microdispersion in different vehicle systems may also be assessed by means of scanning electron microscopy of thick cross sections (plasma etched to enhance contrast) or by transmission electron microscopy of thin cryosections. The tendency for the finer pigments to form 3-dimensional network structures in elastomers may also be measured as a function of the augmentation of dynamic modulus from high to low strain amplitudes. Pigment phase distribution in elastomer blends may be studied by scanning electron microscopy or transmission electron microscopy of thin cryosections, in conjunction with a staining or etching procedure to produce contrast between the separate polymer components. Selective staining is applicable to blends of polymers which differ significantly in their relative levels of unsaturation (e.g., NR/CIIR). Pyrolytic etching (under vacuum) may be used to produce interzone contrast in blends of polymers which differ significantly in their resistance to thermal degradation (e.g., NR/BR, NR/SBR). Pyrolysis GC may be utilized to determine the amount of carbon black in the separate phases of certain elastomer blends. This method is based on the relative intensity of the primary GC peaks for the individual polymers. The chromatographs are obtained from the bound rubber (carbon-polymer gel) that is developed during the mixing of the compound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.