Abstract

Cattle farming can promote diarrheal disease transmission through waste, effluents or cattle fecal matter. The study aims to characterize the diarrheagenic Escherichia coli (DEC) isolated from cattle feces, manure in the composting process and slurry, collected from four cattle markets in Ouagadougou. A total of 585 samples (340 cattle feces, 200 slurries and 45 manures in the composting process) were collected from the four cattle markets between May 2015 and May 2016. A multiplex Polymerase Chain Reaction (PCR), namely 16-plex PCR, was used to screen simultaneously the virulence genes specific for shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and enteroaggregative E. coli (EAEC). DEC was detected in 10.76% of samples. ETEC was the most prevalent (9.91%). STEC and EAEC have been observed with the same rate (0.51%). ETEC were detected in 12.64% of cattle feces, in 6.66% of manure in the composting process and in 5% of slurry. STEC were detected in 0.58% of cattle feces and in 2.22% of manure in the composting process. EAEC was detected only in 1% of slurry and in 2.22% of manure in the composting process. ETEC strains were identified based on estIa gene and/or estIb gene and/or elt gene amplification. Of the 58 ETEC, 10.34% contained astA, 17.24% contained elt, 3.44% contained estIa and 79.31% contained estIb. The two positive EAEC strains contained only the aggR gene, and the third was positive only for the pic gene. The results show that effluent from cattle markets could contribute to the spreading of DEC in the environment in Burkina Faso.

Highlights

  • Fecal contamination is one of the primary contributory factors to the persistence of diarrheagenic pathogens in the environment and contributes to the contamination of food crops and water sources.Intensive cattle farming through cattle fecal matter and effluents contributes to the spreading of these diarrheagenic pathogens in the environment [1].Healthy asymptomatic food animals may carry zoonotic pathogens and represent a principal reservoir of diarrheagenic Escherichia coli (DEC), which may enter the food chain via the weak points in the hygiene practices of the slaughter process [2,3].Traditionally, E. coli has been considered a harmless, commensal bacterium

  • The study showed that E. coli was present in 95% of cattle feces samples, 50% of slurry samples and 44.44% of manure in the composting process samples (Table 2)

  • shiga toxin-producing E. coli (STEC) were detected in 0.58% of cattle feces and 2.22% of manure in the composting process

Read more

Summary

Introduction

Fecal contamination is one of the primary contributory factors to the persistence of diarrheagenic pathogens in the environment and contributes to the contamination of food crops and water sources.Intensive cattle farming through cattle fecal matter and effluents contributes to the spreading of these diarrheagenic pathogens in the environment [1].Healthy asymptomatic food animals may carry zoonotic pathogens and represent a principal reservoir of diarrheagenic Escherichia coli (DEC), which may enter the food chain via the weak points in the hygiene practices of the slaughter process [2,3].Traditionally, E. coli has been considered a harmless, commensal bacterium. Fecal contamination is one of the primary contributory factors to the persistence of diarrheagenic pathogens in the environment and contributes to the contamination of food crops and water sources. Intensive cattle farming through cattle fecal matter and effluents contributes to the spreading of these diarrheagenic pathogens in the environment [1]. Healthy asymptomatic food animals may carry zoonotic pathogens and represent a principal reservoir of diarrheagenic Escherichia coli (DEC), which may enter the food chain via the weak points in the hygiene practices of the slaughter process [2,3]. E. coli has been considered a harmless, commensal bacterium. Several diarrheagenic pathotypes have been recognized based on virulence properties and the mechanisms of pathogenicity [4]. The five main pathotypes of DEC are enteroinvasive E. coli (EIEC), enteropathogenic

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call