Abstract

BackgroundDiaphanous-related formins govern actin-based processes involved in many cellular functions, such as cell movement and invasion. Possible connections to developmental processes and cellular changes associated with malignant phenotype make them interesting study targets. In spite of this, very little is known of the tissue distribution and cellular location of any mammalian formin. Here we have carried out a comprehensive analysis of the formin family member formin -like 2 (FMNL2) in human tissues.ResultsAn FMNL2 antibody was raised and characterized. The affinity-purified FMNL2 antibody was validated by Western blotting, Northern blotting, a peptide competition assay and siRNA experiments. Bioinformatics-based mRNA profiling indicated that FMNL2 is widely expressed in human tissues. The highest mRNA levels were seen in central and peripheral nervous systems. Immunohistochemical analysis of 26 different human tissues showed that FMNL2 is widely expressed, in agreement with the mRNA profile. The widest expression was detected in the central nervous system, since both neurons and glial cells expressed FMNL2. Strong expression was also seen in many epithelia. However, the expression in different cell types was not ubiquitous. Many mesenchymal cell types showed weak immunoreactivity and cells lacking expression were seen in many tissues. The subcellular location of FMNL2 was cytoplasmic, and in some tissues a strong perinuclear dot was detected. In cultured cells FMNL2 showed mostly a cytoplasmic localization with perinuclear accumulation consistent with the Golgi apparatus. Furthermore, FMNL2 co-localized with F-actin to the tips of cellular protrusions in WM164 human melanoma cells. This finding is in line with FMNL2's proposed function in the formation of actin filaments in cellular protrusions, during amoeboid cellular migration.ConclusionFMNL2 is expressed in multiple human tissues, not only in the central nervous system. The expression is especially strong in gastrointestinal and mammary epithelia, lymphatic tissues, placenta, and in the reproductive tract. In cultured melanoma cells, FMNL2 co-localizes with F-actin dots at the tips of cellular protrusions.

Highlights

  • Diaphanous-related formins govern actin-based processes involved in many cellular functions, such as cell movement and invasion

  • The human genome contains 15 formin genes that are subdivided in Diaphanous-related formins (DRFs) and non-DRFs

  • The protein family is defined by the formin homology 2 domain (FH2), capable of polymerization straight actin filaments

Read more

Summary

Introduction

Diaphanous-related formins govern actin-based processes involved in many cellular functions, such as cell movement and invasion. Very little is known of the tissue distribution and cellular location of any mammalian formin. We have carried out a comprehensive analysis of the formin family member formin -like 2 (FMNL2) in human tissues. The formin family consists of large multidomain proteins that control cytoskeletal organization [1]. Formins are conserved in all eukaryotes, where they govern complex cellular processes such as cell shape and motility, migration and cytokinesis. The human genome contains 15 formin genes that are subdivided in Diaphanous-related formins (DRFs) and non-DRFs. The protein family is defined by the formin homology 2 domain (FH2), capable of polymerization straight actin filaments. FH2 attaches to the actin filament during elongation, protecting it from capping proteins.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call