Abstract
Accurate determinations of particle size and particle size distribution (PSD) are essential to achieve the clinical translation of medical nanoparticles (NPs). Herein, dextran-based NPs produced via a water-in-oil emulsification/crosslinking process and developed as nanomedicines were studied. NPs were first characterized using traditional batch-mode techniques as dynamic light scattering (DLS) and laser diffraction. In a second step, their analysis by frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) was explored. The major parameters of the AF4 procedure, namely, crossflow, detector flow, crossflow decay programming and relaxation time were set up. The sizes of the particle fractions eluted under optimized conditions were measured using DLS as an online detector. We demonstrate that FI-AF4 is a powerful method to characterize dextran-NPs in the 200 nm -1 µm range. It provided a more realistic and comprehensive picture of PSD, revealing its heterogenous character and clearly showing the ratio of different populations in the sample, while batch-mode light scattering techniques only detected the biggest particle sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.