Abstract

In this work the impact of two widely used anesthetics on the electrical activity of auditory brainstem neurons was studied during postnatal development. Spontaneous electrical activity in neonate rats of either sex was analyzed through a ventral craniotomy in mechanically ventilated pups to carry out patch clamp and multi-electrode electrophysiology recordings in the medial region of the superior olivary complex (SOC) between birth (postnatal day 0, P0) and P12. Recordings were obtained in pups anesthetized with the injectable mix of ketamine/xylazine (K/X mix), with the volatile anesthetic isoflurane (ISO), or in pups anesthetized with K/X mix that were also exposed to ISO. The results of patch clamp recordings demonstrate for the first time that olivary and periolivary neurons in the medial region of the SOC fire bursts of action potentials. The results of multielectrode recordings suggest that the firing pattern of single units recorded in K/X mix is similar to that recorded in ISO anesthetized rat pups. Taken together, the results of this study provide a framework to use injectable and volatile anesthetics for future studies to obtain functional information on the activity of medial superior olivary neurons in vivo.

Highlights

  • The accurate organization of neuronal circuits is established during development through activitydependent and activity-independent processes that involve the reorganization and fine-tuning of immature synaptic and cellular networks (Goodman and Shatz, 1993; Hanson and Landmesser, 2004; Kirkby et al, 2013)

  • inner hair cells (IHCs) are transiently innervated by direct axo-somatic efferent synaptic contacts from medial olivocochlear (MOC) neurons located in the brainstem superior olivary complex (SOC; Warr and Guinan, 1979; Simmons et al, 1996)

  • Single-unit recordings were performed in five K/X mixanesthetized rat pups before hearing onset, and the effects of 1.5% isoflurane were evaluated on the firing properties of six single-units

Read more

Summary

Introduction

The accurate organization of neuronal circuits is established during development through activitydependent and activity-independent processes that involve the reorganization and fine-tuning of immature synaptic and cellular networks (Goodman and Shatz, 1993; Hanson and Landmesser, 2004; Kirkby et al, 2013). The nAChR is coupled to the activation of small-conductance calcium-activated SK2 potassium channels expressed in the IHCs, which mediate the hyperpolarization of IHC membrane potential in response to MOC efferent activation (Glowatzki and Fuchs, 2000). It has been proposed that MOC efferent-mediated inhibition might contribute to pattern trains of IHC calcium APs during the critical developmental period preceding hearing onset (Kros et al, 1998; Glowatzki and Fuchs, 2000; Marcotti et al, 2003; Johnson et al, 2011; Sendin et al, 2014; Moglie et al, 2018)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call