Abstract

Mutant M7, obtained by transposon mutagenesis of the cyanobacterium Anabaena sp. strain PCC 7120, is impaired in the development of mature heterocysts. Under aerobic conditions, the mutant is unable to fix N2 because of a deficiency of at least two components of the oxygen-protective mechanisms: a hemoprotein-coupled oxidative reaction and heterocyst-specific glycolipids. DNA contiguous with the inserted transposon was recovered from the mutant and sequenced. The transposon had inserted itself within a 732-bp open reading frame designated devA. The wild-type form of devA, obtained from a lambda-EMBL3 library of Anabaena sp. DNA, had the identical sequence. Directed mutagenesis of devA in the wild-type strain showed that the phenotype of the mutant was caused by insertion of the transposon. The wild-type form of devA on a shuttle vector complemented the mutation in M7. Expression of devA by whole filaments, monitored following nitrogen stepdown by using luxAB as the reporter, increased ca. eightfold during differentiation; the increase within differentiating cells was much greater. The deduced sequence of the DevA protein shows strong similarity to the ATP-binding subunit of binding protein-dependent transport systems. The product of devA may, therefore, be a component of a periplasmic permease that is required for the transition from a proheterocyst to a mature, nitrogen-fixing heterocyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.