Abstract

Desert dune sand is considered as a potential sensible heat thermal energy storage (TES) material. Several samples are collected from different locations of the desert in the United Arab Emirates (UAE), and relevant thermophysical and mechanical properties are measured. In addition, the optical properties of desert sand are investigated to evaluate its performance as a direct solar absorber. Thermogravimetric analyses show that the samples appear to be thermally stable between approximately 650 °C to 1000 °C following an initial mass loss occurring during the first heating cycle. The transformation of calcium carbonate into calcium oxide at higher temperature during the first heating process has a negative impact on the solar absorption of the sand. In addition, the high calcium content leads to sand agglomeration which has significant implications on receiver design and operation. It is therefore critical to locate sand collection points with low carbonate content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.