Abstract
This paper presents amethod for evaluating a physical parameter of unknown deformable objects, by using nonprehensile manipulation. By means of simulation analysis, we show that the curve representing the relationship between the object’s angular velocity and the plate’s frequency has a resonance-like response. Based on the above phenomenon, we utilize a Lorentz curve fitting to represent the object’s angular velocity as a function of the plate’s frequency with a simple mathematical expression, instead of deriving the equation of motion of the system that is rather complex due to the intricate dynamics of the system. Then, we show that the first order natural angular frequency in bending determines the frequency at which the object’s has its maximal angular velocity. Using this information, we present a method of how to estimate the object’s first order natural frequency in bending. We show the simulation and experimental results to verify the validity of the method presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.