Abstract

Daptomycin is a lipopeptide antibiotic that binds to and depolarizes bacterial cell membranes. Its antibacterial activity requires calcium and correlates with the content of phosphatidylglycerol in the target membrane. Daptomycin has been shown to form oligomers on liposome membranes. We here use perylene excimer fluorescence to further characterize the membrane-associated oligomer. To this end, the N-terminal fatty acyl chain was replaced with perylene-butanoic acid. The perylene derivative retains one third of the antibacterial activity of native daptomycin. On liposomes containing phosphatidylcholine and phosphatidylglycerol, as well as on Bacillus subtilis cells, the perylene-labeled daptomycin forms excimers, which shows that the N-terminal acyl chains of neighboring oligomer subunits are in immediate contact with one another. In a lipid bicelle system, oligomer formation can be titrated with stoichiometric amounts of phosphatidylglycerol. Therefore, the interaction of daptomycin with a single molecule of phosphatidylglycerol is sufficient to trigger daptomycin oligomerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.