Abstract

We have investigated the structure of D2 receptors present in two prolactin-secreting, dopamine-resistant, transplantable rat pituitary tumors, 7315a and MtTW15. These receptors specifically bind with high affinity the dopamine antagonist [3H]spiroperidol when membrane bound or solubilized by [3-(3-cholamidopropyl)-dimethyl-ammonio]-1-propane sulfonate 10 mM and are pharmacologically characterized as D2 type. Target-size analysis by radiation inactivation indicated a molecular mass of approximately 100,000 and 200,000 daltons for receptors present respectively in 7315a and MtTW15 tumors either membrane bound or solubilized. The minimal size of the D2 binding site was evaluated at 94,000 daltons by photoaffinity labeling with [125I]azido-N-(p-aminophenethyl)-spiperone followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A guanine nucleotide had no effect on the displacing potency of the agonist N-propylnorapomorphine evaluated with membrane-bound or solubilized receptors obtained from either tumor. These results suggest the absence or inactivation of a guanine nucleotide binding protein in the receptorial complex of these tumors. Thus, our data indicate that a structural anomaly is present in the D2 receptorial complex of these prolactin-secreting rat pituitary tumors, which may be responsible for their resistance to the inhibitory effects of dopamine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call