Abstract

From previous immunofluorescent, immunohistochemical and ultrastructural studies, myoepithelial cells have been reported to be absent from the striated and excretory ducts of human salivary gland. Yet recently, certain anti-cytokeratin monoclonal antibodies which specifically label the myoepithelium of salivary gland acini and intercalated ducts have also been found to stain basally situated cells in both striated and excretory ducts. In this study, we have used eight samples of normal human parotid gland (methacarn-fixed and frozen sections) to establish if basal cells of striated and excretory ducts have the cytoskeletal protein complement (actin and cytokeratins) of myoepithelial cells. Using a muscle-specific actin, HHF35, not only is the myoepithelium of acini and intercalated ducts stained in all cases, but stellate and spindle shaped cells are also detected all along the inter- and intralobular striated ducts in four of the eight examples. With double-labeled frozen sections and fluorescent microscopy, the actin-specific probe, phalloidin, and the myoepithelial-selective anti-cytokeratin 14 antibody, 312C8-1, confirm that the striated duct does have a population of basal cells with the cytoskeletal protein make-up of myoepithelium. The monoclonal antibody 8.12 (specific for cytokeratin 13 and 16) also stains some basal cells of striated and excretory ducts, as well as luminal cells of ducts at all levels, but does not label the myoepithelium of acini and intercalated ducts. Both the anti-cytokeratin antibodies and the actin-detecting mechanisms reveal that the basal cell population of striated and excretory ducts is more heterogeneous, and likely functionally more complex, than has been realized previously. Such findings are not in agreement with certain aspects of current theories of the histogenesis of salivary gland tumours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call