Abstract

Cytarabine (ara-C) is the key drug for treatment of acute myeloid leukemia. Since intracellular cytarabine triphosphate (ara-CTP) is an active metabolite of ara-C, factors that reduce the amount of ara-CTP are known to induce drug resistance. However, these factors do not fully explain the development of resistance to ara-C. The present study was conducted to search for new candidate ara-C resistance factors, including those that are unrelated to ara-CTP production. For this purpose, we newly established five ara-C-resistant leukemic clones from different blood cell lineage leukemic cell lines (HL-60, K562, CEM, THP1 and U937). The resistant subclones were 5-58-fold more ara-C-resistant than their parental counterparts. All of the ara-C-resistant subclones, except for ara-C-resistant CEM cells, displayed alteration of ara-CTP-related factors such as ara-C membrane transport capacity, deoxycytidine kinase activity or cytosolic nucleotidase II activity. To identify new candidate factors, we used two comprehensive approaches: DNA microarray and proteome analyses. The DNA microarray analysis revealed eight genes (C19orf2, HSPA8, LGALS1, POU4F3, PSAP, AKT1, MBC2 and CACNA2D3) that were altered in all five ara-C-resistant lines compared to parental cells. Both proteome and DNA microarray analyses further detected a reduced protein level of stathmin1 in the ara-C-resistant CEM subclone compared to its parental line. Thus, the present findings suggested the involvement of novel multiple mechanisms in mediating the ara-C resistance of leukemic cells. The role of some of these molecules in resistance is still unclear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call