Abstract

The technology of ultra-precision machining with single crystal diamond tool produces advanced components with higher dimensional accuracy and better surface quality. The cutting-induced heat results in high temperature and stress at the chip-tool and tool-workpiece interfaces therefore affects the materials and the cutting tool as well as the surface quality. In the ultra-precision machining of al6061, the cutting-induced heat generates precipitates on the machined surface and those precipitates induce imperfections on the machined surface. This paper uses the time-temperature-precipitation characteristics of aluminum alloy 6061 (al6061) to investigate the effect of feed rate on the cutting-induced heat generation in ultra-precision multi-axis milling process. The effect of feed rate and feed direction on the generation of precipitates and surface roughness in ultra-precision raster milling (UPRM) is studied. Experimental results show that heat generation in horizontal cutting is less than that in vertical cutting and a larger feed rate generates more heat on the machined workpiece. A smaller feed rate produces a better surface finish and under a larger feed rate, scratch marks are produced by the generated precipitates and increase surface roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call