Abstract

Cuprous oxide (Cu2O) has a high optical absorption coefficient and favourable electrical properties, which make Cu2O thin films attractive for photovoltaic applications. Using reactive radio-frequency magnetron sputtering, high quality Cu2O thin films with good carrier transport properties were prepared. This paper presents the characteristics of Cu2O thin films that were sputter deposited on quartz substrates and subjected to post-deposition rapid thermal annealing. The thickness of the thin films and the optical constants were determined by ellipsometry spectroscopy (SE). The optical transmittance increased in lower wavelength region after annealing at 900 ̊C in rapid thermal annealing (RTA). The structural and morphological properties of the Cu2O thin films were investigated by electronic scanning microscopy (SEM) and atomic force microscopy (AFM), whereas elemental analysis was performed by X-ray fluorescence spectroscopy (XRF). The carrier mobility, carrier density and film resistivity were changed after post-deposition rapid thermal annealing from respectively ~14 cm2/Vs, ~2.3 x 1015 cm-3 and ~193 Ωcm for the as-deposited Cu2O film to ~49 cm2/Vs, ~5.0 x 1014 cm-3 and ~218 Ωcm for the annealed Cu2O film. The investigation suggests that the sputter-deposited Cu2O thin films have good potential for application as absorber layers in solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call