Abstract

The copper-copper (Cu-Cu) direct bonding technology was proposed in recent years in order to realize precise preparation and reliable service under high current density for three-dimension (3D) packaging in the post-Moore-era. In this study, Cu-Cu direct bonding was achieved in the ambient atmosphere by utilizing highly (111) oriented copper with nanotwin structure (called (111) nt-Cu). The thermal compression with a pressure of 30 MPa was conducted on a couple of Cu films at 300 and 400 °C in air. The Cu-Cu joints after bonding were further investigated by scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Different from the polycrystalline copper, perfect bonding was achieved as confirmed by high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS). The shear strength after air bonding was measured as 96.04 ± 5.67 MPa on average, which demonstrated relatively high performance in traditional Cu-Cu bonding. The excellent resistance to oxidation and fast Cu(111) surface diffusivity of (111) nt-Cu guaranteed the bonding process. Above all, the achievement of (111) nt-Cu high performance bonding in the ambient atmosphere should give an insight into developing new interconnected technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.