Abstract
Cryopreservation currently is the only method for long-term preservation of cellular viability and function for uses in cellular therapies. Characterizing the cryobiological response of a cell type is essential in the approach to designing and optimizing cryopreservation protocols. For cells used in therapies, there is significant interest in designing cryopreservation protocols that do not rely on dimethyl sulfoxide (Me 2SO) as a cryoprotectant, since this cryoprotectant has been shown to have adverse effects on hematopoietic stem cell (HSC) transplant patients. This study characterized the cryobiological responses of the human erythroleukemic stem cell line TF-1, as a model for HSC. We measured the osmotic parameters of TF-1 cells, including the osmotically-inactive fraction, temperature-dependent membrane hydraulic conductivity and the membrane permeability to 1 M Me 2SO. A two-step freezing procedure (interrupted rapid cooling with hold time) and a graded freezing procedure (interrupted slow cooling without hold time) were used to characterize TF-1 cell recovery during various phases of the cooling process. One outcome of these experiments was high recovery of TF-1 cells cryopreserved in the absence of traditional cryoprotectants. The results of this study of the cryobiology of TF-1 cells will be critical for future understanding of the cryobiology of HSC, and to the design of cryopreservation protocols with specific design criteria for applications in cellular therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.