Abstract

A small (1 L) batch stirred cell system has been developed to study crude oil fouling at surface temperatures up to 400°C and pressures up to 30 bar. Fouling resistance–time data are obtained from experiments in which the principal operating variables are surface shear stress, surface temperature, heat flux, and crude oil type. The oils and deposits are characterized and correlated with the experimental heat transfer fouling data to understand better the effects of process conditions such as surface temperature and surface shear stress on the fouling process. Deposits are subjected to a range of qualitative and quantitative analyses in order to gain a better insight into the crude oil fouling phenomenon. Thermal data that can be obtained relatively quickly from the batch cell provide fouling rates, Arrhenius plots, and apparent activation energies as a function of process variables. The experimental system, supported by computational fluid dynamics (CFD) studies, allows fouling threshold conditions of surface temperature and shear stress to be identified relatively quickly in the laboratory. The data also contribute to existing knowledge about the compensation plot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call