Abstract

We characterized the activation of interleukin-1beta-converting enzyme (ICE)-like proteases (caspases) in human neuroblastoma cells (SH-SY5Y) following challenge with staurosporine, an established agent known to induce apoptosis. Time course analyses of lactate dehydrogenase release detected a significant increase in cell death as early as 6 h that continued at least until 24 h following staurosporine treatment. Western blot analyses using anti-poly(ADP-ribose) polymerase (anti-PARP) and anti-CPP32 antibodies revealed proteolytic processing of CPP32 (an ICE homologue) as well as fragmentation of PARP as early as 3 h following staurosporine challenge. Furthermore, the hydrolysis of the CPP32 substrate acetyl-DEVD-7-amido-4-methylcoumarin was detected as early as 3 h and became maximal at 6 h after staurosporine challenge, suggesting a delayed and sustained period of CPP32-like activation. In addition, we used the first immunohistochemical examination of CPP32 and PARP in cells following an apoptotic challenge. The localization of CPP32 in untreated SH-SY5Y cells was exclusively restricted to the cytoplasm. Following staurosporine challenge there was a condensing of CPP32 immunofluorescence from the cytoplasm to a region adjacent to the plasma membrane. In contrast, PARP immunofluorescence was evenly distributed in the nucleus in untreated SH-SY5Y cells and on staurosporine challenge was found to be associated with condensed chromatin. It is important that a pan ICE inhibitor [carbobenzoxy-Asp-CH2OC(O)-2,6-dichlorobenzene] was able to attenuate lactate dehydrogenase release and PARP and CPP32 cleavage and altered immunohistochemical staining patterns for PARP and CPP32 following staurosporine challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.