Abstract

In this study, we have characterized the covalent binding of [14C]-2-chloro-4-acetotoluidide (CAT) radioactivity to microsomes of starling liver and kidney. The maximal velocity (Vmax) of covalent binding and apparent Michaelis constant (Km) for both tissues were similar. The Vmax for liver and kidney were 52.8 and 68.9 pmol/min/mg protein, and the apparent Kms were 0.54 and 0.87 mM, respectively. The covalent binding of radioactivity to heat-denatured microsomes of liver and kidney was reduced by 62% and 15%, respectively. Incubation at 0 degrees C reduced the binding by 80% to liver and 70% to kidney microsomes. Absence of nicotinamide adenine dinucleotide phosphate (NADP) and molecular O2 reduced the binding to liver microsomes by 36 and 53%, as opposed to 28% increase and 26% decrease in binding to kidney microsomes, respectively. Inducers of cytochrome P450 monooxygenase (P450), phenobarbital, and 3-methylcholanthrene (3-MC), had opposite effects on the covalent binding of [14C]-CAT radioactivity to hepatic and renal microsomes. Phenobarbital increased the binding to hepatic microsomes by 100% and had no effect on binding to renal microsomes. 3-MC, on the other hand, increased the binding to kidney microsomes by threefold and had no effect on the binding to hepatic microsomes. SKF 525A, an inhibitor of P450, inhibited the binding to hepatic microsomes by 60% at 0.5 mM but failed to have any effect on binding to renal microsomes. alpha-Naphthoflavone, another inhibitor of P450, had no effect on the covalent binding of [14C]-CAT radioactivity to microsomes of either tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.