Abstract

A pilot plant-scale composter using simulated solid waste was developed to test the fate of consumer products such as disposable diapers. The simulated waste consisted of a mixture of rabbit chow (which included alfalfa), shredded newspaper, sand, and composted cow manure. The compost mass self-heated from an ambient temperature of 27°C to about 55°C in the first 24 h. Dissolved ammonia levels, high in the early stages of the process, began to decrease after about 4 weeks as nitrate concentration began to increase. Both volatile solids and carbon:nitrogen ratios exhibited gradual decreases with time. Microbial biomass, esterase activity, cellulose mineralization, direct microscopic counts (AODC), and relative APIZYM enzyme activity increased significantly in the first several days, and maintained higher levels than initial measurements throughout the 22-week testing period. We concluded that the simulated solid waste underwent physical, chemical, and microbiological changes that would be expected to occur in municipal solid waste in a full-scale composting system. The pilot plant-scale composter should prove to be a valuable tool in assessing the fate of products and materials under simulated compost conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.