Abstract

The dissolved phase of environmental aqueous samples is generally defined by filtration at 0.2 microm or even 0.45 microm. However, it is also acknowledged that colloids <0.2 microm suspended in the aqueous phase can be important for determining contaminant availability and mobility. We have used flow field-flow fractionation (FI FFF) and size exclusion chromatography (SEC) coupled to UV-absorbance (UVA) and inductively coupled plasma mass spectrometry (ICP-MS) to study the dissolved organic matter (DOM) and colloidal binding of U and Ni in water extracts of sediments collected from a contaminated area of the Savannah River Site, a U.S. Department of Energy former nuclear materials production and processing facility, near Aiken, SC. High-performance SEC-UVA-ICP-MS was well-suited to the separation of DOM overthe molecular weight (MW) range of approximately 200-7000 Da. The ICP-MS element specific data indicated that a significant fraction of U was associated with DOM. Uranium exhibited a bimodal distribution and the other fraction was greater than the exclusion limit for the column and coeluted with Al. Flow FFF was used to size this fraction as colloidal with an approximate effective spherical diameter of 0.09-0.12 microm. Element specific ICP-MS data confirmed that U and Al were associated with the colloidal phase. High-field FI FFF was also applicable to sizing DOM but resolution was poorer than SEC. The results of this study suggest that "dissolved" U at this site is predominantly either complexed by DOM or bound to a colloidal fraction while Ni is predominately present as labile complexes or the free cation and, therefore, potentially bioavailable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call