Abstract

A low-cost, potentially compact and robust microwave frequency reference can be constructed by use of vertical-cavity surface-emitting lasers and coherent population-trapping resonances in Cs vapor cells. Fractional frequency instabilities of 2×10-11/τ/s have been achieved with a minimum of 7×10-13 at τ=1000 s. The performance of this device as a function of external parameters such as light intensity, optical detuning, and cell temperature is discussed. The dependence of the dark-line resonance signal on these parameters can be understood largely by means of a simple, three-level model. The short-term stability depends critically on the optical detuning, whereas the long-term stability is limited currently by line shifts due to drifts in cell temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.