Abstract
Abstract Flake graphite cast iron was hot-dip coated with pure aluminium or aluminium alloys (AlSi11 and AlTi5). The study aimed at determining the influence of bath composition on the thickness, microstructure and phase composition of the coatings. The analysis was conducted by means of an optical microscope and a scanning electron microscope with an EDS spectrometer. It was found that the overall thickness of a coating was greatly dependent on the chemical composition of a bath. The coatings consisted of an outer layer and an inner intermetallic layer, the latter with two zones and dispersed graphite. In all the cases considered, the zone in the inner intermetallic layer adjacent to the cast iron substrate contained the Al5Fe2 phase with small amount of silicon; the interface between this phase and the cast iron substrate differed substantially, depending on the bath composition. In the coatings produced by hot-dipping in pure aluminium the zone adjacent to the outer layer had a composition similar to that produced from an AlTi5 bath, the Al3Fe phase was identified in this zone. The Al3Fe also contained silicon but its amount was lower than that in the Al5Fe2. In the coatings produced by hot-dipping in AlSi11, the zone adjacent to the outer layer contained the Al3FeSi phase. The analysis results showed that when AlSi11 alloy was applied, the growth mode of the inner layer changed from inwards to outwards. The interface between the Al5Fe2 phase and the cast iron substrate was flat and the zone of this phase was very thin. Locally, there were deep penetrations of the Al5FeSi phase into the outer layer, and the interface between this phase and the outer layer was irregular. Immersion in an AlTi5 bath caused that the inner intermetallic layer was thicker than when pure aluminium or AlSi11 alloy baths were used; also, some porosity was observed in this layer; and finally, the interface between the inner layer and the cast iron substrate was the most irregular
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.