Abstract

Currently, the effect of heat treatment on the complex coacervation behavior of whey isolate protein (WPI) with gum arabic (GA) is undiscussed. In this work, the complex coacervation behavior of WPI with or without heat treatment and GA in different environments was investigated. The results showed that coacervates were formed at a mass ratio of 2:1 and a pH of 3.5, which was confirmed by the fluorescence spectroscopy results. Heat treatment increased the surface charge of WPI, reduced the saturated adsorption concentration of GA, and enhanced the sensitivity of the complex coacervation reaction to salt ions. Fourier infrared spectroscopy, intermolecular force analysis and molecular docking results confirm that the formation of coacervates is the result of electrostatic interactions. From the scanning electron microscope and differential scanning calorimetry results, it is clear that the whey isolate protein combined with gum arabic forms a gel-like conjugate with higher thermal stability and a dense structure. This study provides more in-depth theoretical guidance for the application of WPI and GA based coacervation and more advanced theoretical data for the study of hWPI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call