Abstract

CO2 must be delivered efficiently during large-scale microalgal cultivation. Bubbleless mass-transfer via diffusion through hollow-fiber membranes (HFM) can achieve much higher CO2-transfer efficiency than traditional sparging systems. This study developed and used a model to compute accurate values for the CO2 flux (JCO2), overall mass-transfer coefficient (KL), and overall volumetric mass-transfer coefficient (KLa) based on the rate of change of pH in batch experiments. A composite HFM comprised of two macroporous polyethylene layers and a nonporous polyurethane layer was tested for CO2 transfer to a sodium carbonate solution using a range of total pressures, inlet CO2 concentrations, and open-end versus closed-end modes of operation. The model accurately computed JCO2 and KLa for pH values above 8. Key trends are that (i) JCO2 and KLa increased with increasing average inlet CO2 partial pressure; (ii) open-end HFMs performed better than closed-end HFMs when the supplied CO2 was less than 100%; and (iii) the available membrane area used for CO2 mass-transfer decreased as the inlet CO2 partial pressure decreased due to depletion of CO2 inside the membrane, especially for closed-end HFMs, since inert gases could not be vented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.