Abstract
Use of the atypical antipsychotic clozapine is associated with life-threatening agranulocytosis. The delayed onset and the association with HLA variants are characteristic of an immunological mechanism. The objective of this study was to generate clozapine-specific T cell clones (TCC) and characterize pathways of T cell activation and cross-reactivity with clozapine metabolites and olanzapine. TCC were established and characterized by culturing PBMCs from healthy donors and patients with a history of clozapine-induced agranulocytosis. Modeling was used to explore the drug-HLA binding interaction. Global TCC protein changes were profiled by mass spectrometry. Six well-growing clozapine-responsive CD4+ and CD8+ TCC were used for experiments; activation of TCC required APC, with clozapine interacting directly at therapeutic concentrations with several HLA-DR molecules. TCC were also activated with N-desmethylclozapine and olanzapine at supratherapeutic concentrations. Marked changes in TCC protein expression profiles were observed when clozapine treatment was compared with olanzapine and the medium control. Docking of the compounds into the HLA-DRB1*15:01 and HLA-DRB1*04:01 binding clefts revealed that clozapine and olanzapine bind in a similar conformation to the P4-P6 peptide binding pockets, whereas clozapine N-oxide, which did not activate the TCC, bound in a different conformation. TCC secreted Th1, Th2, and Th22 cytokines and effector molecules and expressed TCR Vβ 5.1, 16, 20, and 22 as well as chemokine receptors CXCR3, CCR6, CCR4, and CCR9. Collectively, these data show that clozapine interacts at therapeutic concentrations with HLA-DR molecules and activates human CD4+ T cells. Olanzapine only activates TCC at supratherapeutic concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.