Abstract

Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA), is an important cause of pyogenic skin and soft tissue infections (SSTIs). MRSA is an important pathogen in the healthcare sector that has neither been eliminated from the hospital nor community environment. In humans, S. aureus causes superficial lesions in the skin and localized abscesses, pyogenic meningitis/encephalitis, osteomyelitis, septic arthritis, invasive endocarditis, pneumonia, urinary tract infections and septicemia. Investigations focused in the search of other alternatives for the treatment of MRSA infections are in progress. Among the range of compounds whose bactericidal activity is being investigated, ZnO nanoparticles (ZnO-NPs) appears most promising new unconventional antibacterial agent that could be helpful to confront this and other drug-resistant bacteria. The aim of present study is to investigate the antibacterial potential of ZnO-NPs against Staphylococcus species isolated from the pus and wounds swab from the patients with skin and soft tissue infections in a tertiary care hospital of north India. ZnO-NPs (≈19.82 nm) synthesized by sol-gel process were characterized using scanning electron microscopy, X-ray diffraction , and Atomic force microscopy. The antibacterial potential was assessed using time-dependent growth inhibition assay, well diffusion test, MIC and MBC test and colony forming units methods. ZnO-NPs inhibited bacterial growth of methicillin-sensitive S. aureus (MSSA), MRSA and methicillin-resistant S. epidermidis (MRSE) strains and were effective bactericidal agents that were not affected by drug-resistant mechanisms of MRSA and MRSE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call