Abstract
In higher plants, there are wide ranges of biological processes that are controlled through the circadian clock. In this connection, we have been characterizing a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATORS (APRR1, APRR3, APRR5, APRR7, and APRR9), among which APRR1 is identical to TOC1 (TIMING OF CAB EXPRESSION1) that is believed to be a component of the central oscillator. Through previous genetic studies, several lines of evidence have already been provided to support the view that, not only APRR1/TOC1, but also other APRR1/TOC1 quintet members are important for a better understanding of the molecular links between circadian rhythm, control of flowering time, and also photomorphogenesis. However, the least characterized one was APRR3 in that no genetic study has been conducted to see if APRR3 also plays an important role in the circadian-associated biological events. Here we show that APRR3-overexpressing transgenic plants (APRR3-ox) exhibited: (i). a phenotype of longer period (and/or delayed phase) of rhythms of certain circadian-controlled genes under continuous white light, (ii). a phenotype of late flowering under long-day photoperiod conditions, (iii). a phenotype of hypo-sensitiveness to red light during early photomorphogenesis of de-etiolated seedlings, supporting the current idea as to the APRR1/TOC1 quintet described above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.