Abstract

Removal of chromium (III) from aqueous solutions by leonardite (a low-cost adsorbent) was studied in a series of batch experiments. Stabilization of the adsorbent material with alginate beads was also investigated. The extent of adsorption was evaluated as a function of the solution pH, contact time, and the adsorbate concentration. Cr(III) removal was pH dependent, reaching a maximum at a pH range of 4–5. Kinetic studies allowed gives relevant information regarding mass transfer processes involved during the sorption process. Equilibrium data fitted well to both the Langmuir and Freundlich isotherm models and the maximum adsorption capacity turned out to be 75.2 mg Cr(III) g−1. Encapsulation of leonardite in alginate beads resulted in a slightly lower adsorption capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.