Abstract

This paper characterizes the strain Chlorella sorokiniana UTEX 1230 within a laboratory setting using a 1 L bubble column. The findings show that productivity can be trebled under mixotrophic conditions (from 0.2 g·L−1·d−1 to 0.66 g·L−1·d−1) with the addition of sodium acetate. The results also indicate that both the growth rate and final yield increase with the cultivation temperature, with most parameters showing an optimum in the range of 30–35 °C. The maximum specific growth rate was found to be in the region of 0.12 h−1 at a surface irradiance between 100–500 µE·m−2·s−1. This high growth rate makes the strain particularly suited to the rapid production of biomass, suitable for either whole cell bioprocessing or bioremediation. However, the relatively low lipid productivity (9.2 mg·L−1·d−1) confirms previous findings which would indicate poor applicability for biodiesel production. The strain shows greater promise in wastewater treatment applications with removal rates of nitrogen and phosphorus in the region of 37 and 30 mg·L−1·d−1 respectively. Furthermore, the findings show that a fed-batch strategy to inorganic nutrient loading can increase the final yield by around 50% compared to a conventional batch run. This is particularly interesting as fed-batch production techniques are rarely used within microalgal cultivation, so provide an interesting avenue for further investigation. Overall, the findings show that C. sorokiniana UTEX 1230 is a robust and fast-growing microalgal strain suitable both for the laboratory and scale-up.

Highlights

  • Algae constitute a diverse set of photosynthetic organisms, which can range in size from single cellular bodies to multicellular seaweeds

  • Final yields were found to be almost 20% lower in the + CO2 condition when compared to the acetate condition, while the final yield was around 50% lower without carbon dioxide augmentation

  • Key findings within this paper indicate that C. sorokiniana displays a maximal growth rate in the region of 0.12 h−1, as well as averaged batch productivity under conditions of continuous illumination outlined in this paper in the region of 0.22–0.38 g L−1 ·d−1

Read more

Summary

Introduction

Algae constitute a diverse set of photosynthetic organisms, which can range in size from single cellular bodies to multicellular seaweeds. The most commonly cultivated microalgal species have a selection of favorable bioprocessing characteristics; including the capacity to produce higher levels of desirable lipids or valuable secondary metabolites [2]. Of the commercially exploited microalgae the Chlorella genus is prominent and classified within the Trebouxiophyceae family under the division of Chlorophyta. They consist of many unicellular sub-species, distributed in both fresh and saline environments. Characteristic features include a smooth cell wall and a non-flagellated, generally spherical morphology; with the size of the various species found to be within a range of 2–10 μm in diameter.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.