Abstract

Optically anisotropic materials were produced via colloidal lithography and characterized using scanning electronic microscopy (SEM), confocal microscopy, and polarimetry. A compact hexagonal array mask composed of silica sub-micron particles was fabricated via the Langmuir-Blodgett self-assembly technique. Subsequently, the mask pattern was transferred onto monocrystalline silicon and commercial glass substrates using ion beam etching in a vacuum. Varying the azimuthal angle while etching at oblique incidence carved screw-like shaped pillars into the substrates, resulting in heterochiral structures depending on the azimuthal angle direction. To enhance the material's optical properties through plasmon resonance, gold films were deposited onto the pillars. Polarimetric measurements were realized at normal and oblique incidences, showing that the etching directions have a clear influence on the value of the linear birefringence and linear dichroism. The polarimetric properties, especially the chiroptical responses, increased with the increase in the angle of incidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.