Abstract

AbstractContinuous xenografts from 10 children with acute lymphoblastic leukemia (ALL) were established in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Relative to primary engrafted cells, negligible changes in growth rates and immunophenotype were observed at second and third passage. Analysis of clonal antigen receptor gene rearrangements in 2 xenografts from patients at diagnosis showed that the pattern of clonal variation observed following tertiary transplantation in mice exactly reflected that in bone marrow samples at the time of clinical relapse. Patients experienced diverse treatment outcomes, including 5 who died of disease (median, 13 months; range, 11-76 months, from date of diagnosis), and 5 who remain alive (median, 103 months; range, 56-131 months, following diagnosis). When stratified according to patient outcome, the in vivo sensitivity of xenografts to vincristine and dexamethasone, but not methotrexate, differed significantly (P = .028, P = .029, and P = .56, respectively). The in vitro sensitivity of xenografts to dexamethasone, but not vincristine, correlated significantly with in vivo responses and patient outcome. This study shows, for the first time, that the biologic and genetic characteristics, and patterns of chemosensitivity, of childhood ALL xenografts accurately reflect the clinical disease. As such, they provide powerful experimental models to prioritize new therapeutic strategies for future clinical trials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.