Abstract

To demonstrate the role of bile acids in immune modulation we examined the ability of select bile acids to inhibit leukocyte migration and chemoattractant receptor function. To elucidate this mechanism, we employed primary human monocytes, neutrophils and cell lines transfected to express either the high affinity fMLP receptor (FPR) or the low affinity fMLP receptor like 1 (FPRL1). Cells were treated with chenodeoxycholic acid (CDCA) and related bile acids in a 0-400 micromolar range. Cell viability, chemotaxis and calcium flux analysis were preformed. We observed that pathophysiological levels (< or = 150 micromolar) of CDCA competitively inhibited 3H-fMLP binding to human monocytes, FPR and FPRL1 transfected cells. Additionally, CDCA reduced both the chemotactic and calcium flux responses induced by fMLP or "W" peptide. Further, CDCA inhibited anti-FPR antibody binding to monocytes. CDCA selectively inhibited human leukocyte chemotaxis and calcium flux induced by fMLP, but not other chemoattractants, suggesting a mechanism for inhibition of inflammation and suppression of innate immune response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.