Abstract

We used quantitative PCR to investigate the expression of chemokines and chemokine receptors in two Th1-mediated murine models of inflammatory bowel disease (IBD). First, mRNA levels encoding the chemokines MIG, RANTES, lymphotactin, MIP-3alpha, TCA-3, TARC, MIP-3beta, LIX, MCP-1 and MIP-1beta and the receptors CCR4, CCR6 and CCR2 were significantly increased in chronically inflamed colons of IL-10-/- mice when compared with wildtype mice. Interestingly, reversal of colitis in IL-10-/- mice by anti-IL-12 mAb was accompanied by the inhibition in the expression of LIX, lymphotactin, MCP-1, MIG, MIP-3alpha, MIP-3beta, TCA-3, CCR2 and CCR4, whereas the increased mRNA levels of MIP-1beta, RANTES, TARC and CCR6 were unaffected. Second, to investigate which chemokines and receptors were up-regulated during the inductive phase of colitis, we employed the CD4+CD45RBhigh T cell transfer model. At 4 and 8 weeks after reconstitution of Rag-2-/- mice the mRNA levels of IP-10, MCP-1, MDC, MIG, TARC, RANTES, CCR4 and CCR5 were significantly increased prior to the appearance of macroscopic lesions. Other chemokines and chemokine receptors were clearly associated with the acute phase of the disease when lesions were evident. The sum of our studies with these two models identifies chemokines that are expressed at constant levels, irrespective of inflammatory responses, and those that are specifically associated with acute and/or chronic stages of Th1-driven colitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.