Abstract

In the present paper we study certain characteristic features associated with bifurcations of chaos in a finite dimensional dynamical system – Murali–Lakshmanan–Chua (MLC) circuit equation and an infinite dimensional dynamical system – one-way coupled map lattice (OCML) system. We characterize chaotic attractors at various bifurcations in terms of σ n ( q) – the variance of fluctuations of coarse-grained local expansion rates of nearby orbits. For all chaotic attractors the σ n ( q) versus q plot exhibits a peak at q= q α . Additional peaks, however, are found only just before and just after the bifurcations of chaos. We show power-law variation of maximal Lyapunov exponent near intermittency and sudden widening bifurcations. Linear variation is observed for band-merging bifurcation. We characterize weak and strong chaos using probability distribution of k-step difference of a state variable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.