Abstract

Cerium-based conversion coatings were formed by a spontaneous reaction between a water-based solution containing CeCl 3 and aluminum alloy 7075-T6 substrates. Coating performance was evaluated in neutral salt fog according to ASTM B117. Coating microstructure and thickness were observed by scanning electron microscopy (SEM). Coating composition and the cerium oxidation state were characterized using energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. The morphology and salt fog performance of cerium conversion coatings were affected by pre-treatment of the panel prior to coating. The best pre-treatment consisted of desmutting, degreasing, and acid activation. After immersion in the coating solution for 30 s, Ce-rich deposits formed on the 7075 surface. After 5 min, coatings consisted of Ce-rich particles in a Ce-containing matrix. Immersion times of 5 min or longer produced coatings that could pass published military requirements for conversion coating performance in neutral salt fog. XPS analysis showed that the coatings contained Ce 4+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.