Abstract
The role of hydrogen peroxide in the formation of cerium conversion coatings by immersing AISI 1010 commercial carbon steel substrates into solutions containing various concentrations of CeCl3 (0.1, 1, and 10 g L−1) has been investigated as an alternative method for their protection against corrosion. The deposits prepared from the solutions with H2O2 consist of yellow thin and non-uniform coatings with agglomerates of small CeO2 and Ce2O3 crystallites whose sizes increased over the metallic surface as the cerium concentration was increased. Cerium pre-treatments in the presence of H2O2 displayed layers that were rougher than those synthesized without H2O2. A comparison with the chromate conversion pre-treatment is also simultaneously carried out with the discussion of the possible reactions involved in the different stages of process. The coating obtained from the solution containing 0.1 g in 1,000 mL produced better corrosion resistance on the substrate than that observed for its counterparts due to the fact that the surface was more uniformly covered by the conversion coating. The addition of H2O2 to the cerate baths improves visible roughness, corrosion resistance of the conversion coatings and bond strength because hydrogen peroxide acts as an oxygen source during the formation of the coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.