Abstract

Alcohol has complex effects on cerebrovascular health. Monitoring the pathology of alcohol induced cerebrovascular changes in vivo is essential for understanding the mechanism and developing potential treatment strategies. Here, photoacoustic imaging was employed to examine cerebrovascular changes in mice under the treatment of alcohol at different doses. By analyzing the association of cerebrovascular structure, hemodynamics, neuronal function and corresponding behavior, we found that alcohol affected brain function and behavior in a dose-dependent manner. Low dose of alcohol increased cerebrovascular blood volume and activated neurons, without addictive behaviors and cerebrovascular structure changes. With the dose increased, cerebrovascular blood volume gradually decreased, triggering obviously progressive effects on the immune microenvironment, cerebrovascular structure and addictive behavior. These findings will provide further insights into the characterization of the biphasic effects of alcohol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.