Abstract

Low loss dielectric materials with high permittivity and nonlinear behavior are essential for use in capacitive nonlinear transmission lines (NLTLs) for RF generation. NLTLs have a great potential to generate soliton waves for high-power microwave applications in mobile defense platforms and satellite communications. In this paper, the dielectric properties of a piezoelectric capacitor based on lead-zirconate-titanate (PZT) was characterized in a broadband frequency range from 10 MHz to 1 GHz for use in NLTLs. Three commercial ceramic capacitors made of barium titanate (BaTiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ) were also assessed for comparison with the PZT capacitor. The characterization of materials consisted of measuring the relative dielectric constant (real and imaginary parts) as function of the applied voltage and frequency to calculate the loss tangent of the material. The results showed that PZT material has a better performance for use in NLTLs than barium titanate because of its lower losses. As discussed here, however, the use of PZT and barium titanate-based materials in NLTLs are compromised by the self-resonant frequency of the capacitors because of the inherent parasitic inductance associated with the capacitor at high frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call