Abstract

This study explores the electromagnetic characteristics of five cement–slime mixtures using two types of time domain reflectometry sensors. For 28 days of curing, compressive strength tests are conducted and electromagnetic signals are measured. The electromagnetic wave velocity and corresponding apparent permittivity are calculated, and the relationships between these properties and the compressive strengths of the mixtures are established. Results show that in the initial curing period, capturing the apparent permittivity using a conventional probe proves difficult due to the high electrical conductivity of the mixtures. In contrast, an insulated electrical wire can detect reflected signals across all slime ratios, but it exhibits less sensitivity to changes in the electromagnetic signal. The apparent permittivity decreases exponentially over the curing time, influenced by the hydration process. Strong correlations are found between the apparent permittivities derived from both sensors and between decreasing apparent permittivity and increasing compressive strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.