Abstract

Sugarcane bagasse (SCB) is abundantly available agro-waste world-wide and has been used in different applications and its utilization as a source of cellulose attracting attention in the area of biomedical and other applications. The present study investigates the surface morphology, topography, structural, elemental and thermal properties of cellulose nanocrystals (CNCs) extracted by acid-hydrolysis from sugarcane bagasse as agro-waste. Morphological (field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM)), structural (fourier transformed infrared (FTIR) spectroscopy, X-ray diffraction (XRD)), elemental analysis (energy dispersive x-ray diffraction (EDX)) and thermal characterization (TG-DTG-DTA) of CNCs was carried out. Morphological characterization clearly showed the formation of rod-shaped CNCs having size in the range of 250-480 nm (length) and 20-60 nm (diameter). Elemental analysis (EDX) showed 0.72 wt% sulfur impurity in CNCs along with other main components. X-ray diffraction and thermal analysis revealed that CNCs have higher crystallinity (72.5%) than that of chemically purified cellulose (CPC) (63.5%) but have lower thermal stability. These lab extracted CNCs supposed to have a high potential as nano-reinforcement into bionanocomposite for biomedical and other value-added products in industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call