Abstract

The mechanical characterization of cells is important for understanding cellular behavior and physiological functions. We used atomic force microscopy (AFM) to obtain a force-displacement curve and estimate the elastic modulus of hepatocellular carcinoma cells (HEP-G2) utilizing both linear Hertz-Sneddon (HS) and non-linear elastic models. In order to overcome the limitations of HS model, which assumes a linear homogeneous cell body, a cell is modeled as a double-layered body with an outer cytoplasmic layer made mostly of interconnected fibers of cytoskeleton proteins and a nucleus. By disrupting all cytoskeletal protein networks, we estimate the elastic modulus of the core nucleus using FEM for a single ellipsoid. Based on the nucleic modulus and cellular dimensions found by 3D confocal imaging, we develop a novel double-layered cellular (DLC) finite element model. The DLC model provides a more reliable estimate of the elastic modulus of the cell than conventionally used HS model and correlates closely with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.