Abstract
Ultrasonic cavitation at frequencies of 0.514, 0.866, 1.03 and 1.61 MHz in water flowing through tubes was observed by counting bubbles downstream with a resonant bubble detector (RBD) operated at 0.89 or 1.7 MHz. In a 21 mm diameter, thin-walled tube, cavitation thresholds in tap water flowing at 5.3 cm s −1 ranged from 2.0 – 2.5 bar at 0.514 MHz to 3 – 4 bar at 1.61 MHz. When high speed injections were employed to trigger the ultrasonic cavitation with hydrodynamically-generated bubbles, the thresholds were reduced to about 2 bar and bubble production was enhanced for 1.03 and 1.61 MHz exposures. Ultrasonic radiation forces on the bubbles and bubble coalescence appeared to cause, under some conditions, a reduction in bubble counts during subthreshold exposures when bubbles were injected into the flow. The RBD method is a useful tool for detecting and semi-quantitatively observing cavitation in a flow-through exposure system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.