Abstract

Two Arabidopsis ecotypes are resistant to systemic infection by cauliflower mosaic virus (CaMV), a plant para-retrovirus. Arabidopsis ecotype Enkheim-2 (En-2) is highly resistant to CaMV infection while Bla-14 is more weakly resistant. CaMV resistance in En-2 can be largely attributed to the action of a single semidominant gene called cauliflower mosaic virus resistance1 (CAR1), located at a locus on chromosome 1. Resistance in Bla-14 is tightly linked to CAR1 and may be due to a weak allele at the same locus or another gene in a gene cluster. A quantitative polymerase chain reaction assay in conjunction with replication- and movement-incompetent viral mutants was used to determine whether virus replication or movement is affected in the resistant ecotypes. The pattern of accumulation of the wild-type virus in the resistant ecotype, En-2, was similar to that of a movement-incompetent CaMV mutant, suggesting that CAR1 interferes with or fails to support CaMV movement. CaMV-inoculated En-2 plants do not show visible signs of a hypersensitive response. However, indicators of an induced defense response do appear in CaMV-infected En-2 plants, such as the activation of pathogenesis-related protein gene expression and the production of camalexin, an Arabidopsis phytoalexin. Defense responses induced chemically or by mutation in the susceptible ecotypes delayed and reduced the severity of a CaMV infection. These findings suggest that CAR1 acts either in the susceptible ecotype to support virus movement or in the resistant ecotype to signal a defense response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call